Bounded Rank of C ∗-algebras

نویسنده

  • V. Valov
چکیده

We introduce a new concept of the bounded rank (with respect to a positive constant) for unital C∗-algebras as a modification of the usual real rank. We present a series of conditions insuring that bounded and real ranks coincide. These observations are then used to prove that for a given n and K > 0 there exists a separable unital C∗-algebra Z n such that every other separable unital C∗-algebra of bounded rank with respect to K at most n is a quotient of Z n . We also introduce the notion of weakly (strongly) infinite real (bounded) rank for unital C∗-algebras as a tool for distinguishing various types of C∗-algebras of infinite real (bounded) rank. In the commutative case we prove that a unital C∗-algebra has a weakly infinite real (bounded) rank if and only if its spectrum is weakly infinite-dimensional in the standard topological sense. We also show that C∗ (F∞) not only doesn’t have finite real rank, but actually has strongly infinite bounded rank.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

‎Bounded approximate connes-amenability of dual Banach algebras

 We study the notion of bounded approximate Connes-amenability for‎ ‎dual Banach algebras and characterize this type of algebras in terms‎ ‎of approximate diagonals‎. ‎We show that bounded approximate‎ ‎Connes-amenability of dual Banach algebras forces them to be unital‎. ‎For a separable dual Banach algebra‎, ‎we prove that bounded‎ ‎approximate Connes-amenability implies sequential approximat...

متن کامل

Factorization through Matrix Spaces for Finite Rank Operators between C∗-algebras

0. Introduction. In this paper we consider factorizations of finite rank operators through finite-dimensional C∗-algebras. We are interested in factorization norms involving either the completely bounded norm ‖ ‖cb or Haagerup’s decomposable norm ‖ ‖dec (see [11]). Let us denote byMn the C∗-algebra of all n×n matrices with complex entries. Let A and B be two C∗-algebras, and let us consider a f...

متن کامل

CHARACTERIZATIONS OF EXTREMELY AMENABLE FUNCTION ALGEBRAS ON A SEMIGROUP

Let S be a semigroup. In certain cases we give some characterizations of extreme amenability of S and we show that in these cases extreme left amenability and extreme right amenability of S are equivalent. Also when S is a compact topological semigroup, we characterize extremely left amenable subalgebras of C(S), where C(S) is the space of all continuous bounded real valued functions on S

متن کامل

On the Stable Rank of Algebras of Operator Fields over an N-cube

Let A be a unital maximal full algebra of operator fields with base space [0, 1] and fibre algebras {At}t∈[0,1]k . We show that the stable rank of A is bounded above by the quantity supt∈[0,1]ksr(C([0, 1] )⊗ At). Here the symbol “sr” means stable rank. Using the above estimate, we compute the stable ranks of the C-algebras of the (possibly higher rank) discrete Heisenberg groups.

متن کامل

Quasicompact and Riesz unital endomorphisms of real Lipschitz algebras of complex-valued functions

We first show that a bounded linear operator $ T $ on a real Banach space $ E $ is quasicompact (Riesz, respectively) if and only if $T': E_{mathbb{C}}longrightarrow E_{mathbb{C}}$ is quasicompact  (Riesz, respectively), where the complex Banach space $E_{mathbb{C}}$ is a suitable complexification of $E$ and $T'$ is the complex linear operator on $E_{mathbb{C}}$ associated with $T$. Next, we pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001